
Best Practice and New Features

September 2021

Dmitry Blinov

Event Streaming with payload

Sr. Product Manager

2CONFIDENTIAL AND PROPRIETARY | 2

★ What is Reltio Event Streaming ?

★ How Event Streaming Works?

★ Supported types of the queues and known limitations

★ How to deal with the message size limit

★ Event Streaming Architecture - why no FIFO ?

★ How to order events ?

★ How do I filter event stream ?

★ A deeper dive into the event filtering

★ Payload configuration today

★ Delta event streaming - coming in 21.3 preview

★ Getting the best value out of event streaming and future plans

Agenda

3CONFIDENTIAL AND PROPRIETARY | 3

What is Reltio Event Streaming ?

Event Streaming or Message Streaming is Reltio Platform Service that enables the Reltio platform to
process events from an internal queue into an external queue or topic in JSON format.

● Event Streaming supports filter by event

type

● It supports object filters for events - same

format as for Search API

● Events with payload are supported. Today

payload may be configured with limited

granularity (ex. Include all attributes or

include all crosswalks)

● NEW - payload may be configured per

queue

● NEW - streaming of delta payload

supported

● COMING in 21.3 - payload configuration

in Tenant Management UI

● Multiple destinations per queue

4CONFIDENTIAL AND PROPRIETARY | 4

How Event Streaming Works? PROS

● Active notification of changes

● No need to do additional request

to the primary data storage

● Flexible filtering

CONS

● Need to take care of event size

and ordering

Important Note:

1. Use 1-3 External queues per tenant

2. Do not use more than 5 external queues

per tenant

5CONFIDENTIAL AND PROPRIETARY | 5

Supported types of the queues and known limitations

Queue type by cloud Maximum event size allowed

AWS SQS 256 kb

GCP PubSub ~10Mb

MS Azure 1Mb

*Projected future: support direct streaming to Kafka

Reltio Platform stream events into all of the above types of the queues

● Using the same JSON format

● The format that is used is not-decorated JSON schema. By default such JSON has no additional

characters inserted - no spaces, returns etc. is added to the JSON by default

At the same time, topics may have their own schemas, including customized ones. As result, JSON

message consumed from this topic may be formatted differently depending on the topic configuration.

IMPORTANT NOTE: Always parse messages with JSON parser and never as a String object

6CONFIDENTIAL AND PROPRIETARY | 6

How to deal with the message size limit

21.3 preview
● “largeObjectsSupport” will be enabled by

default on all tenants

Today
● Make sure you have “largeObjectsSupport“ tenant configuration enabled

● Use "exceededQueueSizeLimit" attribute of the message to build the consumer logic to work

with large messages

7CONFIDENTIAL AND PROPRIETARY | 7

Event Streaming Architecture - why no FIFO ?

In the Reltio Platform multiple requests

are processed in parallel by multiple

nodes. This allows fast and efficient

horizontal scaling. But this also allows

a potential scenario where the request

that came a few milliseconds later, will

be processed faster and get into the

queue first.

In this architecture use of FIFO is not

relevant and instead, other techniques

should be used to order events by

timestamp.

8CONFIDENTIAL AND PROPRIETARY | 8

How to order events

Today

● Include objectVersion field

● (Optional, secondary alternative to

objectVersion) Include commitTime

timestamp into the message payload

fields

● Whenever you aggregate or persist

streamed object - store and compare

the version or timestamp

● Do not persist or propagate the

consumed message into the

downstream if you already have latest

timestamp stored

Possible solution

● Re-stream messages to Kafka

to aggregate and order

messages

9CONFIDENTIAL AND PROPRIETARY | 9

How do I filter event stream ?

● Reltio Event Streaming supports standard Reltio Object filter queries - the same format as Search and

Export.

● Format for the filter query parameter: filter=({Condition Type}[AND/OR {Condition Type}]*)
● Today filter configuration is supported on the destination level, but Tenant Management UI allows only one

destination per queue

Some examples
● Filter through all attribute values:

filter=equals(attributes, 'Nick')

● Fuzzy search fuzzy(attributes.Name,'Mic')

● Exact search with equals and

equalsCaseSensitive,

containsWordStartingWith, startsWith, contains,

etc.

● regexp filter=regexp(attributes.Name, 'Mat.*')

● gt, lt, gte,lte, range
filter=range(attributes.Age, 20, 40)

10CONFIDENTIAL AND PROPRIETARY | 10

A deeper dive into the event filtering

● Filter can be configured per destination

● Multiple destinations can be configured per queue

Example use case - “I’d like to receive messages only if there was a

change in a particular attribute”

You can configure 2 queues or 1 queue with 2 destinations, filter by

event type and use “changes” filter

in one of the 2 destinations

example:

filter= changes(configuration/entityTypes/HCP/attributes/FirstName)

11CONFIDENTIAL AND PROPRIETARY | 11

Payload configuration

Today

● Payload may be configured per individual

queue

● Payload configuration is controlled by
“JMSEventsFilteringFields”
○ URI

○ Type

○ createdBy

○ createdTime

○ updatedBy

○ updatedTime

○ startDate

○ endDate

○ Attributes

○ Crosswalks

○ Tags

● Empty “JMSEventsFilteringFields” means

everything will be streamed

starting 21.3

Future
● Configure destinations per

queue in UI

● More granular filtering of

payload

12CONFIDENTIAL AND PROPRIETARY | 12

Delta event streaming - coming in 21.3 preview

{

"type":"ENTITY_CHANGED",

"uri":"entities/00009ab",

"deltas":{

"ovChanged":true,

"delta":[

{

"type":"ATTRIBUTE_CHANGED",

"attributeType":"configuration/entityTypes/Location/attributes/City",

"newValue":{

"value":"ChangedCity",

"ov":true,

"id":"8",

"sources":[

"Reltio"

]

},

"oldValue":{

"value":"InitialCity",

"ov":true,

"id":"8",

"sources":[

"Reltio"

]

}

}

}

< Sample delta message
Sample configuration

"messaging": {

"destinations":[

{

"payloadType":"DELTAS",

"type":"queue",

"provider":"default",

"name":"env_tenant",

"dtssQueue":false,

"enabled":true,

"format":"JSON"

},

