
How to Search my
Data
with Reltio API

Feb 2023

Dmitry & Abhradeep

2

Agenda

● Intro
○ API-first platform
○ Infrastructure architecture supporting Search

● API and UI scenarios
○ UI search
○ Faceted Search
○ Fuzzy Search
○ Complex filtering
○ Type Ahead Search
○ Saved Search
○ Get by ID / Crosswalk
○ Searching Activities

● Searching Relations and References
○ Relationship Search
○ Searching by the graph - tree, hops and connections
○ APIs coming soon

● Search Performance and Latency

Introduction
Dmitry

4

Reltio helps to unlock and accelerate value from your data

• 360° view by unifying customer,
supplier, product, and location data
with transactions and interactions

• Instant access to timely, trusted
information across all systems

• See relationships among people,
organization, products, locations,
suppliers, and more

• Rich customer, supplier and product
insights by rapidly enriching data
from external sources

Purchase and

Service History

Organization

Products

Entitlement

Location

Vendor/Supplier

Location

Customer

Department

Vendor/Supplier

Device /

Channel

5

Reltio is an API-led platform

UI Search Type Ahead Search GET by ID Filtered Search

3-plane Architecture and Search

Control Plane

Compute Plane

Data Plane

PLANES SEPARATE CONTROL, COMPUTE AND DATA CONCERNS

UI Search

ElasticSearch Index
Primary

Storage
Matching

Activity

&

History

Type

Ahead

Search

Filtered

Search

GET by

ID

Find

Potential

Match

Find

Activity

Reltio API & UI
Entity Search Scenarios
Abhradeep

8

Different Searches in Reltio UI
This is Advanced SearchFaceted Search

Global Search

& Saved Search

9

Faceted Search

Definition: The entities search considers all entities, but the entities faceted search considers entities with the facet
term only

Use Case : Use Faceted Search API to get a distinct list of values with numbers

Examples:

GET {{tenantURL}}/entities/_facets?facet=roles,type&filter=(equals(type,'configuration/entityTypes/Organization')).

Faceted crosswalk count:

GET {{tenantURL}}/entities/_facets?facet=crosswalks_count&filter=(equals(type,'configuration/entityTypes/Contact'))

For multiple Facets - we can use POST or GET API

GET {{tenantURL}}/entities/_facets?facet=attributes.Prefix,type&filter=(equals(type,'configuration/entityTypes/Contact'))

10

Fuzzy Search

What is Fuzzy Search? - The fuzzy match operator is useful to match terms even when there are minor differences
between the query and indexed data. This is not available in UI.

Use Case : This is one of the most commonly used search APIs . This allows you to find appropriate matches even when
you make a typographical error or minor spelling errors or not sure about the exact search term

Examples:

GET {{tenantURL}}/entities?filter=((equals(type,'configuration/entityTypes/Contact') and fuzzy(attributes.LastName,'Smit'))) &

max=200

This will return contacts with last name = ‘Smith’ due to fuzzy nature of the request

11

Complex Filtering Based advanced Search

Definition: This supports combination of multiple search operators to form complex query based API

Supported Operators: Contains , Starts With , Less Than(equal to) , Greater Than (equal to) , regexp , exists , missing ,
not , in , range

Use Case : This is one of the most commonly used search APIs where users can apply complex filtering logic to get
back list of specific entity types

Examples:

Filetring (Complex)

GET {{tenantURL}}/entities?filter=((equals(type,'configuration/entityTypes/Contact') and fuzzy(attributes.LastName,'Smit') and

startsWith(attributes.Email.Email , 'robin'))) & max=200

GET {{tenantURL}}/entities?filter=((equals(type,'configuration/entityTypes/Contact') and contains(attributes.Email.Email , '*reltio*'))) &

max=200

Search entities by crosswalk count

GET {{tenantURL}}/entities?filter=(equals(crosswalks_count,3))&max=20

12

Global / Type Ahead Search

Definition: JSON array of entity objects for each type from tenant matching filter request in format, order that is
defined by query parameters.

Use Case : This is one of the most commonly used search APIs where users can apply complex filtering logic to get
back list of specific entity types

Options: Both POST (Preferred) and GET methods are possible

Examples:

POST {{tenantURL}}/entities/_typeAheadSearch

{

"filter": " (containsWordStartingWith(attributes, 'Copy')",

"select": "uri,label,attributes._lookupCodes,attributes._lookupValues",

"max": 10,

"options": "sortByOV,ovOnly",

"activeness": "active",

"scoreEnabled": true

}

Comma-separated list of different options. Available options:

● sendHidden- disabled by default, entity's JSON will
contain hidden attributes if this option is enabled.

● searchByOv- disabled by default, to search by all
attributes with ov only.

● ovOnly- return only attribute values that have ov=true
flag.

● nonOvOnly- return only attribute values that have
ov=false flag. If you have a nested or reference attribute
value where ov=true, but sub-attributes where ov=false,
then these sub-attributes will not appear in the response.

13

Working with Saved Searches - GET & CRUD

Definition: User can save search queries for convenience and keep it as personal or share with others.

Use Case : When user wants to manage saved searches using API

Examples:

GET {{tenantURL}}/personal/savedSearches OR {{tenantURL}}/personal/allSavedSearches

For deleting any saved searches

DEL {{tenantURL}}/personal/savedSearches/<Saved Search ID>

Update Saved Search

PUT {{tenantURL}}/personal/savedSearches/<id> - In the body you need to provide the updated JSON (from response of
GET)

Create Saved Search

POST <tenant URI>/personal/savedSearches - In the body you need to provide the search details

14

Get By Entity ID / Crosswalk (Primary Storage Based)

Entity ID Definition: This operation returns an entity object (full or partial) by URI from the tenant.

Examples:

GET {{tenantURL}}/entities/1BUjHPHI - all attributes

GET {{tenantURL}}/entities/1BUjHPHI?select=uri,type,tags -

with select clause for few attributes

Crosswalk Definition: This operation returns an entity object (full or partial) by crosswalk type and ID value from tenant

Examples:

GET {{tenantURL}}/entities/_byCrosswalk/129207-1?type=BvD

■ sendHidden: disabled by default,contains hidden

attributes

■ ovOnly: return only attribute values that have the

ov=true flag.

■ nonOvOnly: return only attribute values that have

the ov=false flag.

■ sendHidden:,contains hidden attributes

■ ovOnly: return only attribute values with ov=true.

■ nonOvOnly: return only attribute values that have

the ov=false flag

15

Search Activity Log

Definition: This operation will return activities happened in the tenant for a certain time period based on query parameters

Note: You can search Activity Log Records up to a maximum number of 10,000 items. You may use Search Activities with
Cursor API to avoid this limitation. Also, you may use Activities Export API for large amounts of data

Use Case : Availability of audit log for Reltio UI and external applications

Examples:

GET {{tenantURL}}/activities - This will return list of all activities for the tenant

The maximum number of Items being indexed (thus, the amount of information that is used for searching) is controlled by
the maxChangedObjects parameter in the Tenant Storage Configuration

Activity objects property that must be used for sorting. Can be used in the combination with the "order" parameter to have
reverse order. Default sorting is by timestamp in descending order.

Filtered Query:

GET {{tenantURL}}/activities?filter=(equals(user,'jyoti.bardiya@reltio.com'))&max=20

https://docs.reltio.com/explore/get-going-with-apis-and-rocs-utilities/reltio-rest-apis/engage-apis/search-using-activity-log-api/search-with-cursor
https://docs.reltio.com/explore/get-going-with-apis-and-rocs-utilities/reltio-rest-apis/engage-apis/search-using-activity-log-api/search-with-cursor
https://docs.reltio.com/explore/get-going-with-apis-and-rocs-utilities/reltio-rest-apis/engage-apis/search-using-activity-log-api/search-with-cursor
https://docs.reltio.com/integrate/export-data-from-reltio-in-bulk/export-data-using-reltio-export-service/exporting-activity-log-data
https://docs.reltio.com/integrate/export-data-from-reltio-in-bulk/export-data-using-reltio-export-service/exporting-activity-log-data
mailto:jyoti.bardiya@reltio.com

16

Search with Cursor
Definition: It returns a character sequence to the API user as a part of the response. All subsequent requests are returned
with the cursor and then the next portion of data in the defined order. As soon as all data is returned, there will be only a
cursor (without data) in the response.

Use Case : Search Entity with Cursor returns the records that are matched with specific criteria in a strictly defined order.

Note :

Query is required in first request in sequence (scan request without filter would cause an error)

Request Body contains the cursor definition. It is needed for all requests except first one.

Examples:

Initial request - POST {TenantURL}/entities/_scan?filter=equals(attributes.Address.StateProvince, 'CA')&max=100

Subsequent requests:

POST {TenantURL}/entities/_scan
{
"cursor": {

"value": "cXVlcnlBbmRGZXRjaDsxOzE0NDI3OmpzdTdBNGNnUWU2YlBqc1JQbTlNbnc7MDs=" }
}

Searching Relations and References
Dmitry

Relation Search - Need Relation Index Enabled

● Search capability for Relations requires separate index
● Index for Relations can be enabled on demand
● You can search Relations Records up to a maximum number of 10,000 items
● You can use the same parameters as with entities search: max, select, filter, order, options, sort etc.
● Relation Index enables the API for Search Relations, for example:

GET {tenantURL}}/relations?filter=(equals(startObject,'entities/1BUjHPHI'))&max=2

● Result: JSON array of relation objects from the tenant matching filter request

Data Plane ES

Relation IndexEntity Index

Primary Storage

Hops/ Connection Search Relation APIs

● Relationships are the links between entities, which together
with the entities form the Reltio Entity Graph

● Reltio’s relationship definition includes

○ Name & Description

○ Direction - undirected, directed, bi-directional

○ Start and End entities for the relationship

○ Directional context

○ Base attributes

● APIs to search through the Graph:

○ Find Tree (search for the object and return the entire tree of relations and objects attached
to it) : GET {TenantURL}/{entity object URI}/_tree

○ Find Connections (return full graph for the object with selected depth): POST

{tenantURL}}/entities/QpaL088/_connections

○ Find Hops (return full set of traversed objects and their relations with the selected depth):
GET {{tenantURL}}/entities/QpaL088/_hops

Coming soon - new API to search connected objects

● Find Connected Parties
● Find Connections
● Find Connections by crosswalk
● Find Connections by URI
● Search before Save

Search API Performance and Latency
Dmitry

Data Factors impacting Search API Latency

● Every 10 filter conditions increase latency by 1%

on average

● Each 10 additional crosswalks may increase

latency by 40% on average

● Each 5 extra results in the search request (5

objects found) may increase latency by 40%

● 5 additional lookups may increase latency by 40%

● Every additional reference attribute increase

latency by 80%

API OPERATIONS, MEDIAN PERFORMANCE
Get Potential Matches, milliseconds

Get Relationships Facets, milliseconds

Get Entity Details, milliseconds

Type-Ahead Search, ms

Tenant Sizes:

- 800 M profiles - 3.4 M profiles

- 11 M profiles - 0.3 M profiles

- 9 M profiles

ms

ms

ms

ms

ms

Search Results, milliseconds

Data Volume is not a factor for individual search APIs, Data Model is a factor!

Thank you

reltio.com

Performance & Latency , Limits

	Slide 1: How to Search my Data with Reltio API
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Reltio helps to unlock and accelerate value from your data
	Slide 5: Reltio is an API-led platform
	Slide 6: 3-plane Architecture and Search
	Slide 7: Reltio API & UI Entity Search Scenarios
	Slide 8: Different Searches in Reltio UI
	Slide 9: Faceted Search
	Slide 10: Fuzzy Search
	Slide 11: Complex Filtering Based advanced Search
	Slide 12: Global / Type Ahead Search
	Slide 13: Working with Saved Searches - GET & CRUD
	Slide 14: Get By Entity ID / Crosswalk (Primary Storage Based)
	Slide 15: Search Activity Log
	Slide 16: Search with Cursor
	Slide 17: Searching Relations and References
	Slide 18: Relation Search - Need Relation Index Enabled
	Slide 19: Hops/ Connection Search Relation APIs
	Slide 20: Coming soon - new API to search connected objects
	Slide 21: Search API Performance and Latency
	Slide 22
	Slide 23: API OPERATIONS, MEDIAN PERFORMANCE
	Slide 24
	Slide 25: Performance & Latency , Limits

